Phd in Economics - Univpm - Microeconomics
 - Production theory - 21 July 2016 (3 points per question)

Given the total cost function:

$$
\mathbf{c}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{y}\right)=\mathbf{A} \mathbf{w}_{\mathbf{1}}^{\alpha} \mathbf{w}_{\mathbf{2}}^{\beta} \mathbf{y}^{\gamma}
$$

where w_{1} is the price of the factor x_{1}, w_{2} is the price of the factor x_{2}, y is output and A, α, β, γ are parameters.

1. define the condition on the parameters such that the cost function is increasing in output;
2. define the condition on the parameters such that the technology is characterized by constant return to scale;
3. define the conditions on the parameters such that the cost function is homogeneous of degree 1 in the price of factors;
4. define the conditions on the parameters such that the cost function is increasing and concave in the price of each factor;
5. compute the ratio between the marginal and the average cost functions;
6. using the Shepard Lemma, compute the conditional demand of the factor x_{1}, i.e. $x_{1}\left(y, w_{1}, w_{2}\right)$
7. compute the elasticity of the conditional labour demand of x_{1} with respect to w_{1} and to w_{2}.
8. assume that the firm operates in a competitive market. Which restrictions on the parameters must be applied in order to have a maximum for the profit function?
9. assume $\alpha=\frac{1}{2}, \beta=\frac{1}{2}, \gamma=\frac{3}{2}$ and $A=1$. Define with p the given price of output. By maximising profits, compute the supply function, i.e. $y\left(p, w_{1}, w_{2}\right)$.
10. by using the result of point 6 (the conditional labour demand for x_{1}) and the numerical values of the parameters given in the point 9 , compute the unconditional demand of x_{1}, i.e. $x_{1}\left(p, w_{1}, w_{2}\right)$.
11. verify that the unconditional labour demand of factor 1 is homogeneous of degree 0 on the price vector.

Soluzione:

1. $\gamma>0$
2. $\gamma=1$
3. $\alpha+\beta=1$
4. $0<\alpha<1,0<\beta<1$
5. $c_{y}^{\prime}=\gamma A w_{1}^{\alpha} w_{2}^{\beta} y^{\gamma-1} \quad \frac{c}{y}=A w_{1}^{\alpha} w_{2}^{\beta} y^{\gamma-1} \quad \frac{c_{y}^{\prime}}{c / y}=\gamma$
6. $x_{1}=\alpha A w_{1}^{\alpha-1} w_{2}^{\beta} y^{\gamma}$
7. $\varepsilon_{x_{1}, w_{1}}=\alpha-1 \quad \varepsilon_{x_{1}, w_{2}}=\beta$
8. $\gamma>1$, because marginal cost must be increasing in output.
9. $c\left(w_{1}, w_{2}, y\right)=\left(\sqrt{w_{1} w_{2}}\right) y^{\frac{3}{2}} \quad \rightarrow c_{y}^{\prime}=\frac{3}{2}\left(\sqrt{w_{1} w_{2}}\right) y^{\frac{1}{2}}$ $p=\frac{3}{2}\left(\sqrt{w_{1} w_{2}}\right) \quad \rightarrow y^{\frac{1}{2}}$ $y=\left(\frac{2}{3} p\right)^{2} \frac{1}{w_{1} w_{2}}$
10. $x_{1}=\alpha A w_{1}^{\alpha-1} w_{2}^{\beta} y^{\gamma} \quad \rightarrow x_{1}=\frac{1}{2} \sqrt{\frac{w_{2}}{w_{1}}} y^{\frac{3}{2}}$ $x_{1}=\sqrt{\frac{w_{2}}{w_{1}}}\left(\left(\frac{2}{3} p\right)^{2} \frac{1}{w_{1} w_{2}}\right)^{\frac{3}{2}} \quad \rightarrow x_{1}=\frac{8}{27} \frac{p^{3}}{w_{1}^{2} w_{2}}$
11. $3-1-2=0$
