Dottorato di Ricerca in Economia Politica, XVIII ciclo

Microeconomics: production and cost functions

May 2nd, 2017

Consider the production function

$$
y=1000\left[1-\exp \left\{-\Phi_{i}(L, K)\right\}\right]
$$

where y is the production (output), while L and K are the inputs, namely the labour and the capital. Let $w=2 r$ be the relationship between the cost of labour (wage w) and the price of capital (r).
Consider the two following cases for the function Φ_{i} :
$-i=1 \Rightarrow \quad \Phi_{1}(L, K)=L K$, with $L>0$ and $K>0$,

- $i=2 \Rightarrow \quad \Phi_{2}(L, K)=L+K$, with $L \geq 0$ and $K \geq 0$.

1. Prove that the maximum possible value of y is the same for $i=1$ and $i=2$, and calculate it. (4 pt)
proof: \qquad
\qquad
\qquad
\qquad
$y_{\text {max }}=$ \qquad
2. Compute the Marginal Rate of Technical Substitution (MRTS), in both cases $i=1$ and $i=2$. (4 pt)

$$
\left|\operatorname{MRTS}_{1}(L, K)\right|=
$$

$$
\left|\operatorname{MRTS}_{2}(L, K)\right|=
$$

\qquad
3. In what case the perfect substitution between inputs L and K exists? (2 pt)
only when $i=1$,
only when $i=2$,
\bigcirc in both cases,
\bigcirc never.
4. In what case the elasticity of substitution is the same as the Cobb-Douglas function? (4 pt)
only when $i=1$,
only when $i=2$,in both cases,never.
5. Compute the elasticity of the production y with respect to the capital input when $i=2$. (4pt)

$$
\varepsilon_{y, K}=
$$

\qquad
6. Compute the conditional demand of the inputs L and K when $i=1$. (4pt)

$$
L_{1}^{*}=
$$

\qquad

$$
K_{1}^{*}=
$$

\qquad
7. Compute the conditional demand of the inputs L and K when $i=2$. (4pt)

$$
L_{2}^{*}=
$$

\qquad

$$
K_{2}^{*}=
$$

\qquad
8. Compute the total cost function in both cases $i=1$ and $i=2$. (6 pt)

$$
\begin{aligned}
& \mathrm{TC}_{1}= \\
& \mathrm{TC}_{2}= \\
&
\end{aligned}
$$

