DOTTORATO DI RICERCA IN ECONOMIA POLITICA (XII CICLO) Econometrics Test (19/07/2011)

	possible. TRUE	0	FALSE		s use as many instrume CAN'T SAY
(b)	The OLS	and ML estim	nators can be seen FALSE	as a special ca	nse of the GMM estimate CAN'T SAY
(c)	For the pr	robit model, t	he ML estimator a FALSE	ılways exists.	CAN'T SAY
(d)			e selection model, ot be used in the r FALSE		ry variables used in the CAN'T SAY

2. Suppose you observe an iid sample of variables y_i whose Data Generating Process is as follows: with probability p, $y_i \sim N(0,1)$; otherwise, $y_i \sim N(\mu,1)$. Alternatively, you may think y_i as

$$y_i = d_i \cdot \mu + \varepsilon_i$$

where d_i is an unobservable Bernoulli rv, ε_i is a standard normal rv and ε_i and d_i are independent.

(a) Show that the density function for y_i can be written as

$$f(y_i; p, \mu) = p\varphi(y_i) + (1-p)\varphi(y_i - \mu)$$

where
$$\varphi(x) = \frac{\exp\{-x^2/2\}}{\sqrt{2\pi}}$$
.

- (b) Find analytical expressions for $E(y_i)$ and $V(y_i)$.
- (c) Find method-of-moments estimators for μ and p.
- (d) Find the first-order conditions for the maximisation of the likelihood.
- (e) Can you think of any problems in testing the hypothesis $\mu = 0$? (*Hint: show that under H*₀ *the information matrix becomes singular*).
- 3. The estimates below refer to to a VAR(2) model with constant for the log of oil price (oil) and the log of the price of Diesel fuel (diesel). The series are shown in figure 1.
 - (a) Discuss the model as a statistical representation of the data.
 - (b) Assuming that the model is statistically valid, discuss its economic implications.

Figure 1: Oil and diesel data

```
Johansen test: number of equations = 2, lag order = 2 Estimation period: 1994:05 - 2011:03 (T = 203) Case 3: Unrestricted constant
```

```
Rank Eigenvalue Trace test p-value Lmax test p-value
0 0.11392 25.599 [0.0008] 24.552 [0.0006]
1 0.0051425 1.0466 [0.3063] 1.0466 [0.3063]
```

VECM system, lag order 2
Maximum likelihood estimates, observations 1994:05-2011:03 (T = 203)
Cointegration rank = 1, Case 3: Unrestricted constant

beta (cointegrating vectors, standard errors in parentheses)

diesel -1.0000 (0.0000) oil 0.70875 (0.019297)

Equation 1: d_diesel

	coefficient	std. error	t-ratio	p-value
const	-0.377182	0.0917641	-4.110	5.77e-05 ***
d_diesel_1	0.0687502	0.0748036	0.9191	0.3592
d_oil_1	0.220719	0.0480009	4.598	7.57e-06 ***
EC1	0.192819	0.0465174	4.145	5.02e-05 ***
Mean dependent	var 0.00621	0 S.D. depe	endent var	0.049330

 Sum squared resid
 0.301077
 S.E. of regression
 0.038897

 R-squared
 0.387507
 Adjusted R-squared
 0.378273

 rho
 -0.003854
 Durbin-Watson
 1.979415

Ljung-Box Q' = 18.8874 with p-value = P(Chi-square(12) > 18.8874) = 0.0913

Test for ARCH of order 1:

Test statistic: LM = 4.42087, p-value = P(Chi-square(1) > 4.42087) = 0.0355019

Equation 2: d_oil

	coefficient	std. error	t-ratio	p-value	
const	-0.144920	0.194381	-0.7455	0.4568	
d_diesel_1	-0.129578	0.158454	-0.8178	0.4145	
d_oil_1	0.254695	0.101679	2.505	0.0131	**
EC1	0.0771496	0.0985362	0.7830	0.4346	

 Mean dependent var
 0.009055
 S.D. dependent var
 0.084498

 Sum squared resid
 1.350948
 S.E. of regression
 0.082393

 R-squared
 0.063318
 Adjusted R-squared
 0.049197

 rho
 -0.032623
 Durbin-Watson
 2.046421

Ljung-Box Q' = 12.2832 with p-value = P(Chi-square(12) > 12.2832) = 0.423

Test for ARCH of order 1:

Test statistic: LM = 16.741, p-value = P(Chi-square(1) > 16.741) = 4.28454e-05

Test of restrictions on cointegrating relations

Restriction set

1: b[1] = -1

2: b[2] = 1

Unrestricted loglikelihood (lu) = 660.22865 Restricted loglikelihood (lr) = 651.57702

2 * (lu - lr) = 17.3033, P(Chi-square(1) > 17.3033) = 3.18638e-05