PhD in Economics and Social Sciences (13th Cycle) Econometrics test (2012-10-17)

(a)	In order to TRUE	use asymptot	ric results, the data FALSE	a we observe n	nust be iid. CAN'T SAY	
(b)	An estimat	tor may be bia	sed and still be co FALSE	onsistent.	CAN'T SAY	
(c)		tor whose var nit may still b		has a non-zero	limit as the sample g	gro
(4)	and (b) X_n		and consider the tw (a) and (b) are true FALSE	_	tatements: (a) $X_n - X$	p
(a)	TRUE					

2. The following is a model for the educational level of household heads, as per the 2010 *Survey on Household Income and Wealth* (source: Bank of Italy).

The explanatory variables are:

Variable Name	Description
ETA	Age in years
SEX	Gender (1=male)
STUPCF	Educational attainment of the individual's father
PARAVG	Average attainment of the individual's parents

In other words, the variable PARAVG is the sum of the individual's father and mother education level, divided by two.

OLS, using observations 1-7951 (n = 6571)

Missing or incomplete observations dropped: 1380

Dependent variable: STUDIO

Heteroskedasticity-robust standard errors, variant HC1

	coeffic	cient	std.	error	r t	-ratio	p-value	
const	3.816	54	0.126	5701		30.12	7.89e-187	***
ETA	-0.0233	3893	0.001	L32060) -	-17.71	1.33e-68	***
SEX	-0.2553	347	0.033	39268		-7.526	5.91e-14	***
STUPCF	0.046	7222	0.065	56243		0.7120	0.4765	
PARAVG	0.765	759	0.076	58872		9.960	3.35e-23	***
Mean depende Sum squared R-squared F(4, 6566) Log-likeliho Schwarz crit	resid od	3.8669 12381. 0.3287 649.81 -11405. 22854.	.75 748 L02 .40	S.E. Adjus P-val	of r sted lue(F ke cr	riterion	1.373221	1 9 0

- (a) Estimate the effect of father's education (β_F)
- (b) Estimate the effect of mother's education (β_M)
- (c) Carry out a test for the hypothesis that the impact on the dependent variable of the educational attainment is equal between mother and father ($\beta_M = \beta_F$).
- (d) Discuss the estimation output.
- 3. Suppose you have a random sample of 100 i.i.d. observations x_1, \ldots, x_n from X with probability density function

$$f(x,c) = \begin{cases} cx^{c-1} & \text{for } x \in [0,1] \\ 0 & \text{elsewhere} \end{cases}$$

and

$$\sum_{i=1}^{n} \ln x_i = -80 \quad \text{and} \quad \bar{x} = \frac{5}{9}$$

(a) find a consistent estimator of *c*;

- (b) test H_0 : c = 1 using the LM statistic.
- 4. Given the following model for the time series y_t

$$y_t = \mu + \phi y_{t-2} + \beta_0 x_t + \beta_1 x_{t-1} + \varepsilon_t, \tag{1}$$

where ε_t is a white noise with zero mean and variance σ^2 . The model (1) has been estimated by using OLS and the results are

 $\hat{\mu}=1.2$ (standard error= 0.8) $\hat{\phi}_2=0.65$ (standard error= 0.25) $\hat{\beta}_0=0.27$ (standard error= 0.03) $\hat{\beta}_1=-0.08$ (standard error= 0.02)

and $Cov(\hat{\phi}, \hat{\beta}_0) = 0$, $Cov(\hat{\phi}, \hat{\beta}_1) = 0.003$, $Cov(\hat{\beta}_0, \hat{\beta}_1) = 0.005$. The estimate of the variance is $\hat{\sigma}^2 = 1$.

$s \hat{\sigma}^2$	= 1.								
(a)	Classify	the m	odel (1) by	selecti	ng one (or	more) of the	ne foll	owing	solutions
		_	,	_	,	○ ADL(1,○ ARMA	,	_	* ' '
(b)	Write the	e null l	hypothesis	H_0 un	der which	the model	reduc	es to a	static model.
	-								
(c)	Comput	e a tes	t for the ab	ove hy	pothesis.				
	Test: Result:		ACCEPT		ribution:	REJECT		stat.:	
(d)	Write the	e ECM	I form for r	nodel ((1).				
	$\Delta y_t = _$								-
(e)	Carry ou	ıt a tes	st for the hy	pothe	sis $H_0:\phi$ -	$+\beta_0+\beta_1=$: 1		
	Test:							stat.:	
(f)	Result:		ACCEPT	_		REJECT er to obtain	_	D(2) m	adal2
(1)	is it poss	sible to	Constrain	me mo	aei iii oid	er to obtain	i aii A	K(2) III	ouer:
	YES (NO	\bigcirc	(CAN'	ΓSAY	\bigcirc
	If your a								
			-			rictions. H_0	:		
	• NO	or CA	N'T SAY: b	riefly v	write your	reasons			

$$y_t = \mu + \phi y_{t-2} + \varepsilon_t \tag{2}$$

where $\varepsilon_t \sim WN(0,\sigma^2)$ and the estimated parameters $\hat{\mu}$ and $\hat{\phi}$ are the same as the above. As you know, this process can be expressed also as $\Phi(L)y_t = \mu + \varepsilon_t$.

(a) Estimate the roots of the polynomial $\Phi(L)$.

Roots:

(b) Is model (2) stationary?

YES () NO () CAN'T SAY ()

(c) Compute $E(y_t)$ and $Var(y_t)$.

 $E(y_t) = \underline{\hspace{1cm}} Var(y_t) = \underline{\hspace{1cm}}$

(d) The autocorrelation of order one $(\hat{\rho}_1)$ is