PhD in Economics (14th Cycle) Econometrics test (2013-06-14)

Name: _

You are asked to complete **two out of the three** exercises below. Of course, you can attempt all of them if you want, but in that case please indicate which ones you want us to evaluate.

1. Consider a vector of two different estimators for the same parameter

$$m = \left[\begin{array}{c} \hat{\theta} \\ \tilde{\theta} \end{array} \right]$$

whose asymptotic properties are

$$\begin{array}{ccc} m & \stackrel{\mathrm{p}}{\longrightarrow} & \mu = \left[\begin{array}{c} \theta \\ \theta \end{array} \right] \\ \sqrt{n}(m-\mu) & \stackrel{\mathrm{d}}{\longrightarrow} & N\left(\left[\begin{array}{c} 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 1 & 1 \\ 1 & 4 \end{array} \right] \right). \end{array}$$

We assume $\theta > 0$. We now consider the problem of devising a new estimator of θ by combining, somehow, the ones we already have.

- (a) Prove that $\bar{\theta} = \alpha \hat{\theta} + (1 \alpha)\tilde{\theta}$ is consistent for any choice of α ;
- (b) find the asymptotic distibution of $\bar{\theta}$;
- (c) prove that $\alpha = 1$ is the best choice in terms of efficiency of $\bar{\theta}$;
- (d) prove that $\bar{\theta} = \hat{\theta}^{\alpha} \cdot \tilde{\theta}^{1-\alpha}$ is consistent for any choice of α ;
- (e) prove that, if we pick the optimal $\bar{\theta}$ and $\bar{\bar{\theta}}$, then $\bar{\theta} = \bar{\bar{\theta}}$.
- 2. Given the following model for the time series y_t

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \theta \varepsilon_{t-1} + \varepsilon_t,$$

where $0 < \theta \le 0.5$ and ε_t is Gaussian a white noise with zero mean and variance 1.

- (a) calculate $Var(y_t)$;
- (b) indicate how you would carry out a test for the hypothesis $H_0: \phi_2 = 0.5\phi_1$ (indicate the parameters covariance matrix with \hat{V});
- (c) show that, under H_0 , the model is not necessarily stationary;
- (d) prove that, if a real number α exists such that

$$\phi_1 = \alpha - \theta$$
 and $\phi_2 = \alpha \theta$

then the ARMA model has a common factor.

(e) ML estimation provides the following results:

Model 1: ARMA, using observations 3-356 (T = 354) Estimated using BHHH method (conditional ML) Dependent variable: y

	coeff.	std.err	Z	p-value	
phi_1	0.590	0.204	2.892	0.0000	* * *
phi_2 theta_1	0.215 0.170	0.205 0.085	1.049	0.2942	* *

Mean dependent var Mean of innovations Log-likelihood Schwarz criterion	-490.4432	S.D. depende S.D. of inno Akaike crite Hannan-Quinn	ovations erion	11.24623 0.967049 990.8864 998.5838
Parameters covariar 0.0416 -0.03 -0.0350 0.04 -0.0028 0.00	-0.0028 20 0.0000	8 0		
	Real	Imaginary	Modulus	
AR				
Root 1	0.995	0.000	0.995	
Root 2	-2.413	0.000	2.413	
MA				
Root 1	-5.303	0.000	5.303	

```
Test for autocorrelation up to order 4 Ljung-Box Q' = 3.21353, with p-value = 0.07303
```

```
Test for ARCH of order 4
Test statistic: LM = 1.59911, with p-value = 0.808951
```

Provide some comments to this estimates and calculate the numerical solutions to the above questions (a) and (b).

(a)
$$Var(y_t) =$$

(b) Test: _____ Distribution: ____ Test stat.: _____
REJECT \bigcirc

3. Let y be a binary variable equal to 1 if a woman is employed and 0 otherwise and x a set of K regressors. Suppose that y follows the model

$$Pr(y = 1|\mathbf{x}) = 1 - [1 + \exp(\mathbf{x}'\boldsymbol{\beta})]^{-\alpha}, \tag{1}$$

where $\alpha>0$ is a parameter to be estimated along with the $K\times 1$ vector $\boldsymbol{\beta}$. The model in Equation (1) is called skewed logit model (scobit). The $K\times 1$ vector \mathbf{x} contains the constant and a set of characteristics of the sample units: income of other members of the household (NWINC), education (EDUC), labour market experience (EXPER), age (AGE), and a binary indicator for the presence of kids younger that 6 in the household (KIDS6).

- (a) Write down the contribution to the log-likelihood function of random draw i.
- (b) Find the partial effect of a continuous regressor x_k on $Pr(y=1|\mathbf{x})$.
- (c) Show that if $\alpha = 1$ the scobit model corresponds to the standard logit model.
- (d) Table 1 reports the estimation results of the scobit and logit models. Which one would you prefer: logit or scobit? Why? Comment on the impact of the regressors on the probability of being employed.
- (e) Table 2 reports the estimation results when we include as a further regressor the square of experience (EXPERSQ). Which model would you choose among the 4 models presented in Tables 1 and 2? Why?

Table 1: Estimation results: scobit vs logit

Scobit model: ML, using observations 1-753

		estimate	std. error	Z	p-value	
	Constant	0.196962	1.32343	0.1488	0.8817	
	NWINC	-0.0173858	0.00757124	-2.296	0.0217	**
	EDUC	0.191607	0.0503793	3.803	0.0001	***
	EXPER	0.0949536	0.0256899	3.696	0.0002	***
	AGE	-0.0812164	0.0178236	-4.557	5.20e-06	***
	KIDS6	-1.25947	0.270005	-4.665	3.09e-06	***
	ln(alpha)	0.623186	0.887749	0.7020	0.4827	
_						

Log-likelihood -406.1494 Akaike criterion 826.2988 Schwarz criterion 858.6673 Hannan-Quinn 838.7687

Logit model: Logit, using observations 1-753

	coefficient	std. error	Z	p-value	
Constant	1.15322	0.742071	1.554	0.1202	
NWINC	-0.0198998	0.00826779	-2.407	0.0161	* *
EDUC	0.223366	0.0429694	5.198	2.01e-07	***
EXPER	0.117887	0.0133856	8.807	1.29e-018	***
AGE	-0.0951414	0.0134388	-7.080	1.45e-012	* * *
KIDS6	-1.46358	0.200354	-7.305	2.77e-013	***

Log-likelihood -406.4583 Akaike criterion 824.9165 Schwarz criterion 852.6609 Hannan-Quinn 835.6051

Table 2: Estimation results when squared experience is included in the model specification

Scobit model: ML, using observations 1-753

	estimate	std. error	Z	p-value
Constant	-7.98380	1090.54	-0.007321	0.9942
NWINC	-0.0147901	0.00630920	-2.344	0.0191 **
EDUC	0.149703	0.0396536	3.775	0.0002 ***
EXPER	0.138242	0.0323753	4.270	1.95e-05 ***
AGE	-0.0601462	0.0153812	-3.910	9.22e-05 ***
KIDS6	-1.01165	0.233575	-4.331	1.48e-05 ***
EXPERSQ	-0.00226147	0.000725623	-3.117	0.0018 ***
ln(alpha)	7.94985	1090.27	0.007292	0.9942

Log-likelihood -399.6862 Akaike criterion 815.3723 Schwarz criterion 852.3649 Hannan-Quinn 829.6237

Logit model: Logit, using observations 1-753

	coefficient	std. error	Z	p-value	
Constant	0.750220	0.760372	0.9866	0.3238	
NWINC	-0.0210297	0.00842723	-2.495	0.0126	* *
EDUC	0.217591	0.0431275	5.045	4.53e-07	***
EXPER	0.203687	0.0318759	6.390	1.66e-010	***
AGE	-0.0922022	0.0136754	-6.742	1.56e-011	***
KIDS6	-1.46815	0.202396	-7.254	4.05e-013	***
EXPERSQ	-0.00314252	0.00101454	-3.097	0.0020	***

Log-likelihood -402.0892 Akaike criterion 818.1783 Schwarz criterion 850.5468 Hannan-Quinn 830.6483