PhD in Economics (16th Cycle) Econometrics test (2015-09-15)

- 2. Let x_1 be a vector of variables, let x_2 be a continuous variables, and let x_3 be a dummy variable. y is a the binary dependent variable.
 - (a) In the logit model

$$P(y = 1 | \mathbf{x}_1, x_2, x_3) = \Lambda(\mathbf{x}_1 \beta_1 + \beta_2 x_2 + \beta_3 x_3), \tag{1}$$

find the partial effects of x_2 and x_3 on the response probability. How would you estimate these partial effects?

(b) The binary dependent variable y is equal to 1 if a man was arrested at least once during 1986 in the US, and 0 otherwise. The explanatory variables are durat which measures the number of months of recent unemployment duration, income is income (in thousand \$), black is a dummy equal to 1 if the individual is black, hispan is a dummy equal to 1 if the individual is black, black = 0 and black = 0 are white. The estimation of a logit model of y, with explanatory variables black, black, and black, and black, returns the estimated parameters reported in Table 1.

	Coefficient	Std. Er	or z		p-value
const	-0.939793	0.07925	63 -11.8	8576	0.0000
durat	0.0200870	0.009363	375 2.3	1452	0.0319
income	-0.0659921	0.00883	-7.4	4667	0.0000
black	0.766025	0.11534	5 6.0	5412	0.0000
hispan	0.448444	0.10771	5 4.3	1632	0.0000
Mean depend	ent var	0.277064	S.D. depen	dent va	ar 0.447631
McFadden R^2	(0.050652	Adjusted <i>F</i>	\mathbb{R}^2	0.047543
Log-likelihood	d –:	1526.725	Akaike crit	erion	3063.451
Schwarz criter	rion (3093.002	Hannan–Q	uinn	3074.132

Number of cases 'correctly predicted' = 1985 (72.8 percent) Likelihood ratio test: $\chi^2(4) = 162.917$ [0.0000]

Table 1: Probability of being arrested in 1986 (logit model, 2725 individuals)

Provide an economic interpretation to the estimated parameters of the variables *durat*, *income*, *black*, and *hispan*.

(c) On the basis of the estimation results reported in Table 1, compute the probabilities of having been arrested at least once for a "typical" white man, a "typical" black man, and a "typical" Hispanic if durat = 0. Motivate your choices on the basis of Table 2.

	White	Black	Hispanic	Total
\overline{n}	1693	439	593	2725
Mean	6.0726	3.2628	5.5064	5.4967
Median	3.5800	0.57000	3.1300	2.9000
Minimum	0.0000	0.0000	0.0000	0.0000
Maximum	50.440	36.910	54.100	54.100

Table 2: Descriptive statistics on income

- 3. Suppose that the direct taxation system works as follows (y_t is annual income, for which we assume $\Delta y_t = \mu + \varepsilon_t$, with $\mu > 0$):
 - on year t, in November, taxpayers pay an advance, which is a fraction of their income from previous year: $a_t = \gamma y_{t-1}$;
 - on year t+1, in May, total taxes are calculated by applying the rate ϕ on the income of the previous year, plus a fixed adjustment u_{t+1} ;
 - the total balance due at t + 1 is obtained by subtracting a_t from the quantity calculated above.

Indicate the time series of tax revenues as x_t ; under the assumption

$$\begin{bmatrix} \varepsilon_t \\ u_t \end{bmatrix} \sim WN \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right),$$

(a) Write the system $\begin{bmatrix} x_t & y_t \end{bmatrix}'$ using matrix notation (as a VAR model).

$$\begin{bmatrix} x_t \\ y_t \end{bmatrix} =$$

- (b) Prove that x_t is nonstationary.
- (c) Calculate $E(\Delta x_t)$.

$$E(\Delta x_t) = \underline{\hspace{1cm}}$$

(d) Time series x_t and y_t are clearly cointegrated. Given the answer you provide in (a), write the VECM model.

$$\begin{bmatrix} \Delta x_t \\ \Delta y_t \end{bmatrix} =$$

(e) Write the second component of the normalised cointegrating vector β .

3

$$\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$