PhD in Economics 1st year Econometrics exam (2018-01-28) Statistical theory

Please try to write as legibly as you can (in your own interest).

will	be consi	idered wron	ie space pr ig.	ovidea.	A "Not i	lecessarily a	answer with no m	otiva
(a)	If X is True	a discrete	variable, it	s distrib False	O O	action is diffe	rentiable in all I Not necessarily	₹.
(b)	Suppos reals. 7	e you have F	a nondeger) > $E(X)^3$	nerate ra	undom va	riables X wit	h support over th	ne pos
	True	0		False	0		Not necessarily	0
(c)	An esti True	mator may	be asymp	totically False	normal	and yet not	consistent. Not necessarily	0
(d)	GMM	estimators 1	may not be	e consist	cent.			
	True	0		False	0		Not necessarily	0
(-)		· 1	- 1:4	· · · ·				6 41
(e)	estimat	tonal normation $\hat{\beta} = \left[\sum_{i=1}^{n} \right]$	ality of y_i : $\mathbf{x}_i \mathbf{x}_i'$] ⁻¹ \sum	\mathbf{x}_i is ess $\mathbf{x}_i y_i$ False	C	the asympt	Not necessarily	t the

- 2. Consider an iid sample of bivariate Bernoulli random variables (Y, X) where 0 < P(X = 1) = p < 1, 0 < P(Y = 1) = q < 1 and $P(Y = 1, X = 1) = \theta \cdot p \cdot q$.
 - (a) Prove that, if p + q = 1 and $\theta = 0$, then

$$\operatorname{corr}(X,Y) = -1;$$

(b) prove that

$$n^{-1}\sum_{i=1}^n x_i \xrightarrow{\mathbf{p}} p;$$

(c) check if the statistic

$$\hat{\theta} = n \cdot \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}$$

is a consistent estimator for θ ;

(d) prove that, given the linear regression

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{1}$$

the OLS coefficient $\hat{\beta}_1$ converges in probability to $\frac{q(\theta-1)}{1-p}$.

Answer the points above on a separate sheet. Now suppose that you observe a sample with the following data:

$$n = 1500$$
 $\bar{y} = 0.4$ $\bar{x} = 0.8$ $\frac{1}{n} \sum x_i y_i = 0.3$

(e) Compute the OLS coefficients:

 $\hat{\beta}_0 =$ _____ $\hat{\beta}_1 =$ _____

- (f) Compute the variance estimator
 - $\hat{\sigma}^2 =$ _____
- (g) Test the hypothesis $H_0: \theta = 1$.

 Test type:
 Distribution:
 Test statistic:

 Decision:
 O
 Reject
 On't reject