PhD in Economics (XXIth Cycle) Econometrics test (2019-04-XX)

Name: .

1. There is some consensus in the medical literature that sleep disorders are more prevalent in night-shift workers. To test it, you decided to run an experiment. You randomly selected 100 workers of a very large firm with thousands of employees, all of them with a night-shift. Then, in agreement with the human resources department, you randomly selected 48 of them and they were exempt from the night-shift ($x_i = 1$). The remaining 52 went on with the usual work-shift ($x_i = 0$). After 6 months you asked all the selected workers if they had had problems in sleeping in the last 3 months. The variable y_i is equal to 1 if worker *i* reported sleeping problems in the last 3 months and 0 otherwise. The collected data about the outcome variable (y) and the treatment variable (x) are summarized in Table 1.

Table 1: Outcome variable (y) and treatment variable (x)

	y = 0	y = 1
x = 0	24	28
x = 1	32	16

Given the probability model based on the following index function model

$$y^* = \alpha + \beta x + \varepsilon$$

$$y = \mathbb{1}[y^* > 0], \qquad (1)$$

where 1 is the indicator function, equal to 1 if the argument is true:

(a) Prove that the total log-likelihood can be written as

$$\mathcal{L} = 24 \log[1 - F(\alpha)] + 28 \log[F(\alpha)] + 32 \log[1 - F(\delta)] + 16 \log[F(\delta)],$$

where $\delta \equiv \alpha + \beta$ and $F(\cdot)$ is the cumulative distribution function of ε .

- (b) Estimate by maximum likelihood α and β using the logit model.
- (c) Test the hypothesis that $\beta = 0$ by using a likelihood ratio test.
- (d) Replicate the hypothesis test on the significance of β after the estimation of the probit model. Does your conclusion about the significance of β change?
- (e) Compute the average partial effect of the treatment (exemption from the night-shift) on the probability of having sleep problems. Comment on it.
- (f) Calculate the average partial effect of the treatment if a linear probability model is estimated by OLS. Does the average partial effect change?

2. Given a sample of T = 750 observations, suppose that the OLS estimates of a VAR(1) model are as follows (standard errors in parentheses).

Eq. 1: $x_t = -0.58 + \kappa x_{t-1} - 0.16y_{t-1}$, (0.01) Eq. 2: $y_t = 0.56 + 0.8 x_{t-1} + 0.36y_{t-1}$.

(a) Calculate the unconditional expectation of the process under the assumption $\kappa = 0$.

$$\begin{bmatrix} E(x_t)\\ E(y_t) \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

(b) Carry out an appropriate test in order to estabilish if the variable x_t Granger-causes the variable y_t .

Test type:		Distribution:	
Test statistic:			
\bigcirc	REJECT	\bigcirc	DON'T REJECT

- (c) Re-express the VAR as a VECM using the estimated coefficients.
 - $\begin{bmatrix} \Delta x_t \\ \Delta y_t \end{bmatrix} =$
- (d) Prove (in a separate sheet) that a process whose coefficients equal the OLS estimates is stationary if $\kappa = 0.5$.
- (e) Find the value $\hat{\kappa}$ for which the estimated VAR(1) is cointegrated.
 - $\hat{\kappa} =$ _____
- (f) Write the cointegration vector when $\kappa = \hat{\kappa}$

 $\beta' = \begin{bmatrix} & & & \\ & & & \\ & & & \\ \end{bmatrix}$

(g) Write the loading vector α when $\kappa = \hat{\kappa}$

 $\alpha' = \begin{bmatrix} & & & \\ & & & \\ & & & \\ \end{bmatrix}$